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1. Introduction and summary

Non-critical superstring theory [1] is a part of the moduli space of string theory com-

pactifications with special properties. The dimension of space-time can be lowered, the

background contains fewer (super)symmetries, and there are fewer fields in the perturba-

tive string spectrum. The search for (linear dilaton) holography in lower dimensions, or

the exploration of the full moduli space of string theory compactifications are sufficient

motivation for the study of these backgrounds. In this paper, we concentrate on their abil-

ity to allow for the economical study of N = 1 gauge theories with flavor (see e.g. [2 – 5]

and [6, 7]).

Many properties of gauge theories have gained intuitive interpretations via their em-

bedding into string theory using D-branes. One such field where progress was made in

understanding Seiberg duality in N = 1 gauge theories is in terms of brane set-ups [8, 9].

In particular the matching of the moduli spaces and the chiral rings was achieved in terms

of the embeddings of NS5-branes and D-branes in flat space-times.

In this paper, we wish to develop the understanding of N = 1 gauge theories via their

embedding into string theory further. In particular, the non-critical superstring theory

set-up automatically takes into account the backreaction of the NS5-branes (of mass 1/g2
s )

on the closed string background, in the (doubly scaled) near-horizon limit [10] . This

allows us to clearly separate effects due to the closed string NS5-brane solitons, and due

to the D-brane defects (of mass 1/gs). Indeed, once the closed string backreaction due to

the NS5-branes is taken care off, we can study the D-branes in their presence using the

boundary states that code the boundary conformal field theory that the open strings give

rise to.

We will argue in this paper that this provides a microscopic view on D-brane set-

ups and on Seiberg duality [11]. In particular, we will see how the microscopy allows

to clearly see the appearance and importance of the meson in the magnetic dual, the

phenomenon of Higgsing, and the appearance of dangerously irrelevant operators in the

field theory. This involves a nice but detailed interplay between the boundary SCFT’s on

the worldsheet, the physics of the gauge theory and the closed string physics in these highly

curved backgrounds. In the rest of this section, we summarize the flow of the main ideas

in the paper.

We study the type IIB d dimensional closed non-critical superstring [1] background

R
d−1,1×SL(2, R)/U(1). The factor SL(2)k/U(1) is a Kazama-Suzuki coset superconformal

field theory [12] , which has a mirror description as the N = 2 Liouville theory. The

supercoset has central charge c = 3 + 6
k = 3(1 + Q2), where Q is the slope of the linear

dilaton theory that the conformal field theory asymptotes to. We shall focus on the level

k = 1 which comes with a corresponding four-dimensional (d = 4) flat space factor.

We shall study D-branes which fill the flat space R
3,1. The low energy theories on the

worldvolume of these D-branes are the four-dimensional minimally supersymmetric gauge

theories.1 The field content and interactions of the gauge theory depend on the profile of

1The branes which are Dirichlet in some of the flat directions are also interesting, they give rise to

non-perturbative effects like domain walls and instantons [7] in the gauge theories.
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the brane in the cigar. The branes on the cigar are of two types, localized and extended2.

The localized branes are based on the identity representation and live at the tip of the cigar.

They realize pure super Yang-Mills as their world-volume theories. These were analyzed

in [6] and [7] independently (see also [17]). Here, we shall study further the extended branes

which realize flavor in N = 1 gauge theories [6, 18].

The extended branes obey to a good approximation Neumann boundary conditions in

the weak-coupling region. As we go towards the strong coupling region, a worldvolume

potential develops and they dissolve away. These branes are defined semi-classically by a

complex parameter µB whose absolute value indicates how far they extend into the region

near the tip. Quantum mechanically, they are better described by the parameters (J,M)

which are the labels of the SL(2) representations from which they descend.

For the continuous representation (J = 1
2 − iP,M = 1

2), the branes introduce quarks

and anti-quarks into the gauge theory [6] . The mass of the quarks is set by the parameter

P 2, and vanishes at P 2 = 0. For other values of (J,M), the corresponding boundary states

set down in [17, 19, 20] were studied in detail in [21] . One aspect which was not very clear

about these branes was whether they have a well-defined unitary self-overlap.3. We find

here that one can indeed understand these branes systematically following the ideas of [15]

and there do exist branes with a unitary spectrum for values of J in the range 0 ≤ J ≤ 1
2 .

These branes have a semiclassical interpretation of turning on a worldvolume two form

flux in the region near the tip of the cigar. At J = 0, this value of the flux reaches a

critical value and localizes at the tip, corresponding to forming a localized brane. In the

quantum theory, this is seen in a relation between the boundary states which expresses

the localized identity boundary state as a difference between the J = M = 0 and the

J = M = 1
2 boundary state. This phenomenon is similar to that in Liouville theory [22];

the N = 2 Liouville theory interprets this relation as the localized brane being “a brane

inside a brane” [23] i.e. built of gauge fields living on the extended brane.

The quantum description of the branes as boundary states contains much more infor-

mation. The J = M = 0 brane introduces flavors in the fundamental and anti-fundamental

representation, along with a gauge field into the gauge theory on the localized branes. Its

self overlap contains, among other modes a localized mode with the quantum numbers of

a meson!

We thus develop a picture of the Higgs mechanism in this theory as the following: the

J = 1
2 flavor brane combines with the color brane to give the J = 0 flavor brane. The

J = 0 flavor brane thought of as a single object preserves only one combination of the

two U(1)’s rotating the two branes independently. It sits at the origin of the Higgs branch

of the theory and realizes in its spectrum the meson as a Nambu-Goldstone boson of the

broken symmetry.

From what we said above about the relation between the three branes (all of positive

tension), it might seem like the J = 1
2 brane and the identity brane should be thought

of (outside the Higgs branch) as the elementary branes. However, this turns out to be so

2These are similar to the ZZ [13] and FZZT [14, 15] branes in Liouville theory; in fact the relation

between them is more than an analogy [16] .
3It was noticed [17] that for real values of J ∈ ( 1

4
, 1

2
], the self-overlaps are well-defined.
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because of a particular choice in orientation of the branes with respect to the closed string

background4. This change of orientation is implemented in the theory by changing the

phase of the bulk parameter µ which multiplies the N = 2 Liouville potential.

The operation µ → −µ affects all the states in the theory including the branes, and

the net effect is that the new color brane and the J = 0 brane become elementary and the

J = 1
2 brane can be expressed as a sum of these two. Following this phenomenon onto

the low energy theory realized on the branes leads us to the electric-magnetic duality of

Seiberg [11] . This type of rearrangement of the basis of boundary states leading to Seiberg

duality was observed at the level of the charge lattice in [24 – 27] for quiver gauge theories.

With an explicit worldsheet description of our theories and their branes at hand, we can

lift these statements to the exact boundary states which includes the coupling to all the

closed string excitations of the theory.

The boundary state description has one more piece of easily computable, useful in-

formation. It tells us how the closed string background backreacts to the presence of the

source. It has been argued (see e.g. [28]) that the profile of the backreaction encodes the

running of the coupling constant in the field theory. Such considerations in this case tell

us that the gauge theory in question has indeed the spectrum of N = 1 SQCD, but also

suggest that there is an interaction quartic in the quark superfields.5 This theory can be

thought of as a softly broken N = 2 theory which is sensible from the viewpoint of 5-brane

embeddings in string theory as we shall explain.

The layout of the rest of the paper is as follows: In section 2 , we summarize the

construction of the various boundary states on the cigar, and then present the addition

formulas. In section 3 , we develop a semiclassical understanding of the various branes

and their addition relations, and then present the transformation properties under the

change in phase of µ referred to above. In section 4 , we present the self-overlaps of the

various branes, paying attention to the new ones — we show the appearance of the localized

modes, and explain their role in the gauge theory. We then address the question of mutual

supersymmetry and present a list of branes which preserve the same set of supersymmetries.

In section 5 , we explain the relation between our theories and the more familiar brane

set-ups in ten dimensions and point out where the exact treatment is not just pleasing but

necessary.

Having thus assembled all the ingredients and intuitions, we put them all together in

section 6 and read off as a consequence the duality in the low energy theory. Then, in

section 7 , we begin to develop an understanding of the processes as an RG flow in the

boundary CFT. In section 8 , we probe in more detail the interactions in the gauge theory

under consideration. We compute a first order backreaction of the branes onto the closed

string background and show that the anomalies of a classical U(1) global symmetry of the

theory is encoded in the backreaction onto the RR axion. From the backreaction onto the

NSNS sector, we argue that the gauge theory under consideration is really N = 1 SQCD

4The relative orientation arises while specifying the sine-Liouville potential to define the worldsheet

theories and is an well-defined notion because of the lack of further transverse directions, as is familiar from

set-ups with anomalous creation of branes.
5This is also consistent with the lack of a chiral flavor symmetry in the theory.
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with a quartic coupling of the quarks. In section 9 , we make some final remarks and point

out open issues.

2. The branes on the cigar

The boundary states on the N = 2 supercoset SL(2, R)/U(1) can be classified as A type

or B type according to the gluing of the left-moving N = 2 algebra to its right-moving

counterpart. When tensored with space filling boundary states in the flat space R
3,1, the

B-branes in the cigar are supersymmetric in the type IIB closed superstring theory. Since

the U(1) R-current of the N = 2 superconformal algebra on the worldsheet contains a term

that translates the chiral boson corresponding to the angular direction θ of the cigar, the

B-type boundary condition always leads to Neumann boundary conditions in the angular

direction θ, i.e. the B-branes conserve the momentum around the cigar. If a brane extends

to the asymptotic weak coupling region where a semi-classical notion is valid, we can say

that the supersymmetric branes wrap the circle of the cigar. We will sometimes use the

picture of the T-dual type IIA superstring theory on the N = 2 Liouville theory with a

momentum sine-Liouville condensate in which the supersymmetric A-branes conserve the

winding around the cylinder.

A large class of consistent boundary states has been presented in a clear manner in [21]

, summarizing and extending earlier work [17, 19, 20]. The consistency conditions on the

boundary states include the requirement that the spectrum of boundary operators be sen-

sible (e.g. has a positive density of states), as well as a factorization equation which leads

to a so-called shift-equation, analyzed in [29, 21]. A complete check of the consistency

requirements on these non-rational boundary conformal field theories remains to be per-

formed.

It is crucial [17] that the set of B-branes contains an identity brane that by definition

has only the identity representation in its open string spectrum. Its overlap with other

B-branes contains (as a consequence of a generalized Verlinde formula [30] ) only the

single representation characterizing those branes. Thus, we can review first the relevant

characters of the representations of the N = 2 superconformal algebra, then recall the

associated D-branes.

The relevant representations are actually representations of the N = 2 superconformal

algebra extended by a spectral flow operation, leading to extended characters i.e. characters

summed over spectral flow orbits [17] . It is convenient to label these characters in terms

of quantum numbers associated to a parent supersymmetric SL2 theory. The characters

are then labeled by the numbers (J,M), parameterizing their parent SL2 Casimir and

compact U(1) charge. Equivalently they can be labeled by their N = 2 conformal dimension

and R-charge (h,Q), where these are given in terms of the quantum numbers (J,M) by

the formulas h = −J(J−1)
k + M2

k and Q = 2M
k in the NS sector. Another convenient

parameterization, natural for continuous representations of SL2, is given by the formula

J = 1
2 − iP , where P is a momentum variable. For a detailed discussion of these issues

see [31, 19].
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In order not to clutter the formulas, in the following we immediately restrict to our

case of interest, namely the level k of the coset equals one. For k = 1, the relevant extended

characters in the NS sector are labeled by a charge Q ∈ {0,±1}. We distinguish represen-

tations according to whether they descend from continuous or discrete representations, or

the identity representation in the parent SL2 theory:

Continuous : J =
1

2
− iP, P ∈ R

+,M ∈ {0,
1

2
}

ChNS
cont(h,Q; τ, z) = qh−Q2

+1

4

∑

m∈Z

q(m+ Q
2

)2y2m+Q ϑ00(τ, z)

η3(τ)

Discrete : J = |M |

ChNS
disc(Q; τ, z) = q−

1

4

∑

m∈Z

qm2+|Q|m+ |Q|
2 ysgn(Q)(2m+|Q|)

(1 + ysgn(Q)qm+ 1

2 )

ϑ00(τ, z)

η3(τ)

Identity : J = M = 0

ChNS
Id (τ, z) = q−

1

4

∑

m∈Z

(1 − q)qm2+m− 1

2 y2m+1

(1 + yqm+ 1

2 )(1 + yqm− 1

2 )

ϑ00(τ, z)

η3(τ)
. (2.1)

Note that the continuous characters depend on |Q| only. The characters form a repre-

sentation of the modular group [17] . The characters in the other sectors ÑS,R, R̃ can be

found by N = 2 spectral flow (see e.g. [17, 19]).

Corresponding to each of these characters, there is a consistent boundary state [21].

These boundary states are constructed in the following manner. We first define the

Ishibashi states:

〈〈p,Q|e−πTHcl

eiπz(J+ eJ)|p,Q′〉〉 = 2π
(
δ(p − p′) + δ(p + p′)

)
δZ2

(Q,Q′)ChNS(p,Q, iT, z).

(2.2)

Then the identity brane corresponds to the one-point functions6:

|B; Id〉 =

∫ ∞

−∞

dp′

2π

∑

Q′∈Z2

ΨId(p
′, Q′)|p′, Q′〉〉

ΨId(p′, Q′) = (
π

2
)

1

2 νip′ Γ(1
2 + Q′

2 + ip′)Γ(1
2 − Q′

2 + ip′)

Γ(i2p′)Γ(1 + i2p′)
. (2.3)

It can be checked that it has only the identity character in its self-overlap. The brane

associated to the continuous representation has a Cardy state:

|B; cont, P,Q〉 =

∫ ∞

−∞

dp′

2π

∑

Q′∈Z2

Ψcont(p
′, Q′)|p′, Q′〉〉

Ψcont(p
′, Q′) = (2π)

1

2 νip′ cos (4πpp′)
Γ(1 − i2p′)Γ(−i2p′)

Γ(1
2 − ip′ + Q′

2 )Γ(1
2 − ip′ − Q′

2 )
eπiQQ′

. (2.4)

6We have included here the dependence on the bulk interaction coefficient ν which we assume to be real

for now. We discuss the physics of its phase later.
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The brane carries only the continuous representation in its overlap with the identity brane.

Finally, the brane carrying only the discrete representation in its overlap with the identity

brane can be described by the formulas:

|B; disc,Q〉 =

∫ ∞

−∞

dp′

2π

∑

Q′∈Z2

Ψdisc(p
′, Q′)|p′, Q′〉〉

Ψdisc(p
′, Q′) = i(8π)−

1

2 νip′eiπQQ′
Γ(1 − 2ip′)Γ(−2ip′) ×(

eiπ(Q′

2
− 1

2
+ip′)e−i4πp′p Γ(1

2 + ip′ + Q′

2 )

Γ(1
2 − ip′ + Q′

2 )
− eiπ(Q′

2
+ 1

2
−ip′)ei4πp′p Γ(1

2 + ip′ − Q′

2 )

Γ(1
2 − ip′ − Q′

2 )

)
(2.5)

This is the anti-chiral brane in [21]. There is another discrete brane corresponding to the

chiral brane in [21]. The one-point functions in the other sectors ÑS,R, R̃ can be obtained

by spectral flow. It was checked in [21], and further in [32] that the branes listed above

obey a bulk-boundary factorization constraint (i.e. the shift equation).

There are restrictions on the values of the parameters (J,M) labeling the Cardy states.

The open string spectrum7 allows only for unitary representations to appear in the cigar

brane overlap. Moreover, we need to demand mutual consistency of the boundary states as

well as with the bulk spectrum of the theory. Our strategy will be to consider the branes

to be analytic functions of the parameters (J,M) in some of the calculations that follow,

and take care to impose all restrictions that follow from consistency and unitarity.

2.1 Addition relations obeyed by branes

For the level k = 1, the extended characters thought of as analytic functions of (J,M) obey

two identities [17]:

Character addition formulas

Chcont(h =
1

2
, |Q| = 1; τ, z) = Chdisc(Q = 1; τ, z) + Chdisc(Q = −1; τ, z)

Chcont(h = 0, Q = 0; τ, z) = Chcont(h =
1

2
, |Q| = 1; τ, z) + ChId(τ, z). (2.6)

What is even more powerful is that the corresponding branes obey related identities which

can be checked by using the explicit one-point functions in formulas (2.3), (2.4), and (2.5)

. Using these we obtain the important addition relations between the branes:

Brane addition formulas

|B; cont, h =
1

2
, |Q| = 1〉 = |B; disc,Q = 1〉 + |B; disc,Q = −1〉

|B; cont, h = |Q| = 0〉 = |B; cont, h =
1

2
, |Q| = 1〉 + |B; Id〉. (2.7)

In the next section, we shall develop a semiclassical spacetime understanding (gs → 0)

of the various branes and in particular the above two equations in (2.7) 8. We remark

7In this particular set-up a light-cone gauge choice in some extra flat directions is possible.
8By the modular bootstrap reasoning, the brane addition formula (2.7) implies the character addition

formula (2.6) .
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already that the second addition relation is similar to an equation for boundary states in

bosonic c = 1 theory9[33, 22, 34]. We will understand its implications to gauge theory

physics in the following sections. In the rest of this section, we shall summarize the open

string sigma-model (α′ → 0) understanding of the branes.

2.2 The branes as defined by the Boundary cosmological constant

Let us recall that the bulk theory is defined by a complex parameter, the coefficient µ, µ

of the N = 2 Liouville coupling LSL = µ ψψ̃ e−
1

Q
(ρ+ρ̃+i(θ−θ̃)) + c.c where we have used the

asymptotic variables on the cigar. There is also the related parameter µ̃, the coefficient

of the cigar interaction in terms of which the correlators can be defined. For µ = µ, the

equation relating the coupling constants is [21] :

(gtip
s )−2 = µ2/k = µ̃

Γ( 1
k )

Γ(1 − 1
k )

≡ ν. (2.8)

The case of level k = 1 needs a renormalization [7] similar to the Liouville theory at

b = 1 [35] , as can be seen from the bulk tachyon reflection amplitude. We have, with

k = 1 + ε,

(gtip
s,ren)−2 = µ2

ren = νren; µren = µε (2.9)

On the boundary, the coupling constants are the cosmological constants µB, µB and the

non-chiral coupling µ̃B , related to the brane labels (J,M) by the equations [21] :

µB = (
2kµ

π
)1/2 sin (π(J − M))

µB = (
2kµ

π
)1/2 sin (π(J + M))

νB ≡ µ̃B
Γ( 1

k )

Γ(1 − 1
k )

= −
µΓ( 1

k )

2π
cos

(π

k
(2J + 1)

)
(2.10)

For the level k = 1 then, the renormalized cosmological constants (which enter the open

string amplitudes) are defined by the formulas:

µBε1/2 ≡ µB,ren = (
2µren

π
)1/2 sin (π(J − M))

µBε1/2 ≡ µB,ren = (
2µren

π
)1/2 sin (π(J + M))

νBε ≡ νB,ren = −
µren

2π
cos (π(2J + 1)) =

µren

2π
cos (2πJ). (2.11)

3. Semi-classics and covariance

In this section, we discuss some of the semi-classical properties of the D-branes in the cigar,

and the covariance properties of the boundary states under a Z2 operation.

9Other precise relations between the branes of the two theories were written in [16] .
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3.1 Semi-classical description of the branes

We observe that the D1-branes of sine-Liouville theory with momentum condensate (see

e.g. [6]) reach asymptotic infinity from two angular directions, with an angular parameter

θ0 that takes values in a full circle of length 2π. When we concentrate on the brane

that stays fixed in the angular direction as it goes to the strongly coupled region (r = 0)

however, we note that the NSNS sector one-point function is invariant under the operation

θ0 → θ0 + π. This is directly associated to the fact that the D1-branes have two legs, and

that it allows for half-integer winding open strings. In the full supersymmetric theory, we

would moreover pick up a sign in the RR term in the boundary state under this operation,

due to the difference in orientation of the resulting rotated D1-brane. In contrast, the

localized D1-branes of [32] (which we may think of as difference of (anti-)chiral branes in

the nomenclature of [21] ) are only invariant under the full 2π rotation, showing that they

have, in this sense, only a single leg (which in the case of these D1-branes is localized near

the more strongly coupled region).

The picture we sketched above is T-dual to the D2-branes on the cigar whose physics we

can now more easily picture. For D2-branes, the differences discussed above are reflected in

having either a single-sheeted D2-brane, or a double-sheeted D2-brane [6] . The associated

Wilson line on the D2-brane is either 2π or π valued. Our discrete brane (2.5) which can

be identified with the D2-brane of [36] and the anti-chiral brane of [21] is single sheeted.

In contrast the continuous brane consist of two oppositely oriented sheets (represented by

the sum of a chiral and an anti-chiral brane). Thus, we have given a geometrical picture

for the first addition relation in (2.6) .

The picture we developed also explains why the single-sheeted discrete D2-branes give

rise in the full theory to a RR-tadpole that cannot be absorbed in the background. It

leads to an inconsistent bulk theory (for space-filling branes in the flat directions). By

open-closed string duality, should we add such a brane to the theory, we would discover

anomalous chiral matter in the massless open string sector. In contrast, the two-sheeted

continuous brane cleverly cancels the potential RR-tadpole by having two sheets of opposite

orientation (nevertheless preserving supersymmetry). See also [6] .

The second addition relation shows that the difference between the two particular two-

sheeted space-filling branes under study is precisely the brane localized at the tip. The

brane J = 1
2 + iP extends from infinity to a certain distance determined by P 2 from the

tip where it dissolves, as can be seen from the one-point functions [6] . As P = 0, it covers

the whole cigar. On adding a localized brane at the tip, we get formally the J = 0 brane.

We can understand this “addition” by realizing that the localized brane sources a two-

form flux on the extended brane. The J = 0 brane admits a deformation where the cigar

is still covered, but the distribution of the two form field changes. On turning on this

deformation, the B-field spreads out from the tip and localizes in a ring at a small distance

from the tip [37] . Semi-classically, we can identify this parameter to be J ∈ [0, 1
2 ]. The

J = 0 brane then is simply a point in this moduli space where the dissolved brane becomes

point-like at the tip.
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3.2 Dependence of the branes on the bulk interaction parameter µ, and the

action of µ → −µ.

In this subsection, we want to study how the closed string modes and the D-branes change

under a change of phase of the bulk interaction parameter µ, and in particular under

µ → −µ. The action µ → −µ is not a symmetry of the N = 2 theory as can be seen

from the closed string interaction written in section 2.2 . However, the covariance of the

theory tells us how the objects in the theory defined by µ are related to the objects in the

theory with −µ. From the form of the worldsheet action, we also see that the operation

µ → −µ is equivalent to the action (−)w : θ → θ +π and θ̃ → θ̃−π on the left-moving and

right-moving angular coordinate in the cigar theory. In the T-dual sine-Liouville picture,

this is a rotation of the cylinder by π.

In the perturbative sector of the theory, closed string modes in the sector with odd

values of asymptotic winding pick up a sign, and those with even values of winding do not.

The tachyon state of winding one which has a condensate in the theory picks up a sign

under the operation.

Now we ask what is the action on the boundary states. Firstly, there is an implicit

dependence through the coupling to the closed string modes. We can use the same Ishibashi

basis (2.2) as before and keep track of the sign dependence as a phase in the one-point

function. The identity brane depends only on the closed string parameter µ, and no other

intrinsic parameter, and so the same should be true about its corresponding one point

function. We can write the µ dependence as:

ΨId(p′, Q′;µ) = µip′−Q′

2 µip′+ Q′

2 (
π

2
)

1

2

Γ(1
2 + Q′

2 + ip′)Γ(1
2 − Q′

2 + ip′)

Γ(i2p′)Γ(1 + i2p′)
(3.1)

which is consistent with the bulk reflection amplitude [17] . Using the one-point func-

tions (2.4) , (2.5) , we can also write a similar equation for the µ dependence of the

extended branes.

In addition, the action of the rotation (−1)w could induce explicit changes of sign

due to the full boundary state having a well-defined charge under the above mentioned

symmetry µ → −µ accompanied by (−1)w. To test this, we look at the coupling of the

on-shell tachyon winding mode with the localized and extended branes. From (2.3) , (2.4)

, we see that the former couples (with an infinite coefficient (see [7] )) and the extended

brane |B;J = M = 1
2〉 has vanishing coupling. We deduce the following transformations

under µ → −µ:

|B; Id;µ〉NS → −|B; Id;−µ〉NS

|B;J = M =
1

2
;µ〉NS → |B;J = M =

1

2
;−µ〉NS (3.2)

Note that the brane |B;J = M = 0〉 which is a linear combination of the above two does

not have a fixed transformation property under the operation.

It is important to note that the tension of the new localized brane (−|B; Id;−µ〉NS) is

positive — this can be seen by the computation of [7] where the tension was worked out to
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be proportional to ν
1

2

bulk = µbulk. A change in the overall sign of the boundary state and a

change in sign of µ together give a factor of unity. At an intuitive level, we have that the

tension of the brane localized at the tip is proportional to gtip
s

−1
= µbulk (2.9) . A change

in its sign forces a change in sign of the positive tension boundary state.

Let us now discuss the RR sector of the boundary states. Under the rotation of

the cylinder with a sine-Liouville potential by π, the full state |B;J = M = 1
2〉 changes

orientation with respect to the potential. This orientation does not make a difference

for the NS sector of the boundary state, but it implies that the RR sector state changes

sign with respect to the RR sector closed string fields on the cylinder (e.g. RR one-form

in type IIA).10 We will see later that this is consistent with the NS5-brane setup in ten

dimensions. We write then the final equations describing the transformations of the branes

under µ → −µ:

|B; Id;µ〉 → −|B; Id;−µ〉

|B;J = M =
1

2
;µ〉 → |B;J = M =

1

2
;−µ〉. (3.3)

4. The spectrum of open strings ending on various branes

In this section, we shall address the issue of the self-overlaps of the continuous branes, the

overlaps between the localized and continuous branes, and the mutual supersymmetries

preserved by the various branes. At the end of the section, we will present a summary of

branes which are mutually supersymmetric and have a unitary spectrum in their overlaps.

4.1 The self overlap of the extended branes

As mentioned earlier, we can formally define branes based on the continuous and discrete

characters with arbitrary values11 of (J,M). A necessary condition for consistency of the

branes is that their self-overlap, and overlaps with other well-defined branes give rise to

unitary spectra.12 We shall focus on the continuous branes since we saw in the last section

that they do not have a Ramond-Ramond tadpole at infinity.

We choose a parameterization J = 1
2 − iP , where P is allowed to take complex values.

The overlap between two branes can be found by expanding the two branes using the one-

point functions (2.4) in the defining Ishibashi basis (2.2) . One finds [17], after an exchange

of order of integration to which we shall return shortly:

eπ 3z2

T 〈B;J1,M1|e
−πTHcl

eiπz(J+ eJ)|B;J2,M2〉 =

∫ ∞

−∞
dp

[
ρ1(p|J1, J2)Ch(p,M2 − M1; it, z

′)

+ ρ2(p|J1, J2)Ch(p,M2 − M1 + 1; it, z′)
]

(4.1)

10One can instead compare the RR sectors of the above brane and the localized brane — the localized

brane |B; Id〉 rotates along with the potential and the relative orientation of the two branes changes.
11We shall impose the Seiberg bound J ≤ 1

2
following [34] .

12This problem was touched upon in [17] .
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where the spectral densities ρi are given by:

ρ1(p|J1, J2) =

∫ ∞

0
dp′

cos (4πpp′)

sinh2 (2πp′)

∑

εi=±1

cosh

(
4π

(
1

2
+ iε1P1 + iε2P2

)
p′

)

ρ2(p|J1, J2) = 2

∫ ∞

0
dp′

cos (4πpp′)

sinh2 (2πp′)

∑

ε=±1

cosh
(
4π (iP1 + iεP2) p′

)
. (4.2)

For Pi ∈ R
+, these formulas are well-defined. For imaginary values of Pi which we

are interested in, corresponding to 0 ≤ J ≤ 1
2 , one has to be more careful. The p′ integral

in (4.2) may generate additional divergences at p′ = ∞, which can be eliminated by shifting

the contour of p integration in (4.1) before exchanging the order of the integrals as explained

in [15] . Thereafter, one can freely exchange the integral and shift back the contour, finding

additional contributions to the brane spectrum.

As a warmup, let us view how the above analysis accords with the addition relation

for the branes. From the addition relation, we would expect a J = M = 0 brane to have

the same spectrum as a J = M = 1
2 brane, with two extra continuous representations at

j = m = 1
2 and another localized mode corresponding to the identity character. This is

in accord with the following observation. The densities associated to the J = 0 brane and

the J = 1
2 brane are related as follows:

ρ1(p|J = 0) = ρ1(p|J =
1

2
) + 4

∫ +∞

0
dp′ cos 4πpp′ cosh 2πp′

ρ2(p|J = 0) = ρ2(p|J =
1

2
) + 4

∫ ∞

0
dp′ cos 4πpp′. (4.3)

These integrals are divergent if (p, p′) are real, but let us imagine having solved this problem

by shifting the contour of p in (4.1) for the moment and proceed unhindered. We see that

the J = 0 self-overlap picks up a delta function contribution at p = 0 from the second

density ρ2, after p-integration, giving rise to one continuous character at j = 1
2 . The

first density ρ1, after integration over p′, contains two poles, at ip = ±1
2 . After shifting

(back) the contour of integration of p to the real axis, the integral on the real axis vanishes

due to anti-symmetry, and the pole at ip = 1
2 is picked up in the process, contributing

a continuous j = 0 character. The latter splits into the second j = 1
2 character and the

identity character. Thus, we see that the annulus spectrum is consistent with the brane

addition relation.

We will now put all of this on a firm footing using the ideas of [15]. We first shift the

contour of the p integration in the complex plane to make the integral (4.2) well-defined

for imaginary pi as well. The spectral densities ρi have divergent pieces independent of

the boundary states coming from the region p′ = 0. These can be subtracted off, and

one can define relative spectral densities. We use the regularization of [14] in terms of the

q-Gamma function with b = 1:

log Sb(x) =

∫ ∞

0

dt

t

[
sinh(Q − 2x)t

2 sinh(bt) sinh(t/b)
−

(Q/2 − x)

t

]
; Q = b +

1

b
. (4.4)
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The convergent parts of the spectral densities are the following:

ρ1(p|J1, J2) =
1

8πi

∑

εi=±1

ε0∂p lnS1

(
1

2
+ iε0p + iε1P1 + iε2P2

)

ρ2(p|J1, J2) =
1

4πi

∑

εi=±1

∂p lnS1(1 + ip + iε1P1 + iε2P2). (4.5)

Now, on shifting back the contour of integration of p, there is a possibility of picking up

additional contributions from the poles of the functions (4.5) . For the self overlap, we have

J1 = J2 =: J . Some details of this computation are given in appendix A, and we obtain

the following results:

Results of the self overlap computation for the extended branes.

1a. For J > 0, the function ρ2(j) defined by (4.2) needs no shift of contour for its

convergence. For the case J = 0, a pole and a zero in the third and the fourth S1

functions cancel each other and there is no extra pole.

1b. There is however a delta function contribution to the function ρ2(j) at j = 1
2−ip = 1

2 .

This is due to a crossing of the branch cut of the logarithm in (4.5) .

2a. For 1
4 < J ≤ 1

2 , the contour in (4.2) for the function ρ1(j) is well-defined, and there

are no extra contributions to the spectrum.

2b. For 0 < J ≤ 1
4 , there is a delta function contribution to ρ1(j) at j = 1

2 for the same

reason as above.

2c. For J = 0 − ε, ε ≥ 0, there is a pole at j = 1
2 − ip = 0 whose residue is unity.

Comments.

1. The branes with J ≤ 0 have in their spectrum new extra localized modes contained

in the continuous character J = M = 0. Many of these branes (e.g J < 0) have a

non-unitary spectrum in their overlap with the identity brane, as we shall see soon.

2. The computation above was for the NS character. The presence of the other three

sectors will be dictated by supersymmetry.

3. The delta function in ρ1 and ρ2 also makes its appearance in the boundary Liouville

theory, as is consistent with the addition relation in that context. In fact, the function

ρ2 is exactly the spectral density on the extended branes of Liouville theory with an

appropriate change of variables.

4.2 Mutual Supersymmetry and the GSO projection

We have understood the various boundary states in the cigar SCFT from different points

of view. Now we want to focus on the properties of the branes in the full six-dimensional

string theory. From this point on, we shall discuss these branes, using the construction
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of [7, 17] to complete the cigar boundary states into the full D-brane boundary state.

We need to make a GSO projection in the open string channel consistent with the closed

string spectrum. In [7] , we discussed only one type of brane, using the boundary state

|B, Id〉. When there are no other branes present in the background, the two possible GSO

projections are equivalent, giving rise to a brane |D3〉 and an anti-brane |D3〉. We shall

denote the full extended branes and anti-branes by |D5;J,M〉 and |D5;J,M 〉.

We are interested in the question of how much supersymmetry is preserved in the

presence of one or more of the branes we have described. The closed string background

has N = 2 Poincare supersymmetry in d = 4, and has a U(1)R symmetry arising from

the rotation of the cigar [38] . The localized brane |D3〉 and the anti brane |D3〉 preserve

half of the eight bulk supercharges. They do not preserve any of the same supercharges

and a configuration of a |D3〉 and a |D3〉 is non-supersymmetric and has a tachyon in the

spectrum.

The arguments for supersymmetry in [7] (appendix A) relied basically on the Neu-

mann boundary condition for the R-current of the N = 2 theory. All the branes in question

here are B-branes and preserve the Neumann boundary condition, and so are half BPS by

themselves. They all conserve the U(1)R symmetry.13 The question of mutual supersym-

metry thus boils down to a GSO projection, which can be seen in the (non)vanishing of

the annulus diagram between the various branes.

Let us first investigate the supersymmetry of the branes relative to the |D3〉 brane.

We note that the twisted NS and the R-sectors characters follow by spectral flow from

the NS sector. After tensoring the flat space parts, we have the following two sets of

branes based on the continuous characters with vanishing overlap with the D3-brane (with

h = −J(J − 1) + M2 arbitrary):

〈D3|e−THcl |D5;J,M = 0〉 =

1

2

qh− 1

4

η6(τ)

[
ϑ00(2τ, 2z)

(
ϑ2

00(τ, z) − ϑ2
01(τ, z)

)
− ϑ10(2τ, 2z)ϑ2

10(τ, z)
]

= 0 (4.6)

〈D3|e−THcl |D5;J,M =
1

2
〉 =

1

2

qh− 1

2

η6(τ)

[
ϑ10(2τ, 2z)

(
ϑ2

00(τ, z) + ϑ2
01(τ, z)

)
− ϑ00(2τ, 2z)ϑ2

10(τ, z)
]

= 0 (4.7)

We have mutually supersymmetric branes for any value of the parameter J . Note that the

second brane is an anti-brane. This nomenclature is based on the semiclassical notion of

the flux measured in the weak coupling region. The two branes above have an opposite sign

for the flux (as we will explain in more detail later on). On the open string side though,

the GSO projection is the same — so that the two branes are mutually supersymmetric.

We present a low energy expansion of these partition sums in appendix B.

Remarks.

13The boundary states are invariant under this symmetry, the backreaction onto the background causes

this symmetry to be anomalous on the branes [7] .
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1. All the modes is these expansions are localized because the |D3〉 brane is.

2. For J < 0, both the amplitudes 〈D3|e−THcl |D5;J,M = 0〉 and

〈D3|e−THcl |D5;J,M = 1
2 〉 have a non-unitary spectrum.

3. For 0 ≤ J < 1
2 , the amplitude 〈D3|e−THcl |D5;J,M = 1

2〉 has a tachyonic spectrum.

The degeneracy between bosons and fermions then implies that the fermionic spec-

trum is non-unitary.

4. For 0 < J < 1
2 , the amplitude 〈D3|e−THcl |D5;J,M = 0〉 has massive modes.

We are then left with two extended branes with massless modes in their overlap with |D3〉,

the analysis of which we turn to next.

4.3 Summary of branes which realize interesting gauge theories

We have the following list of interesting branes which preserve the same N = 1 super-

symmetry in d = 4 — the brane |D3〉, the brane |D5;J = M = 1
2〉 and |D5;J = M = 0〉.

The various partition functions contain a four dimensional space filling piece. The mass-

less spectrum in four dimensions is then controlled by the piece of the partition function

arising from the cigar. In this subsection, we present some details of the spectra among

these various branes and summarize them at the end.

The brane |D3〉 has only localized modes in its spectrum. The cigar piece of the

partition function contains only the identity character ChId and the massless fields are a

gauge field multiplet in four dimensions [7] .

The brane |D5;J = M = 1
2〉 has no localized modes in its self-overlap. Its overlap

with the |D3〉 contains from the cigar piece Chcont(J = M = 1
2) whose massless spectrum

consists of a quark and an anti-quark multiplet [6].

The states |D5;J,M = 0〉 with 1
4 < J < 1

2 have a self- overlap which is exactly the

same as that of the |D5;J = M = 1
2〉. For 0 < J ≤ 1

4 , there is in addition one other mode

at the boundary of the continuous representation j = 1
2 . In the overlap with the |D3〉,

the cigar part of the character is Chcont(J,M = 0), which has generically only massive

four-dimensional modes for J > 0.

As J → 0, the modes in the overlap with the |D3〉 start to become massless. The

brane corresponding to the boundary state |D5;J = M = 0〉 has in its overlap with |D3〉

the continuous character Chcont(J = M = 0) which is a sum of Chcont(J = M = 1
2) and

ChId. The massless fields in this overlap are a quark and anti-quark multiplet from the

J = 1
2 character as well as a gauge field multiplet from the ChId. Its self overlap however,

is a sum of the self overlap of |D5;J = M = 1
2 〉, a piece from the character at the edge of

the continuum Ch(j = m = 1
2 ) and another from the character Ch(j = m = 0). Together,

we have in the spectrum a four dimensional gauge superfield (from the lowest mode), and

two massless scalars which we interpret below.

A note on Higgsing and bound states. Before we finish this section with a recap of

the highlights in a table, we make a few comments on the realization of the Higgs mechanism

in this theory and the two massless scalars with j = m = 1
2 appearing in the self overlap
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Brane |B〉 RR Charge Overlap with |D3〉 Self-overlap

|D3〉 +1 Gauge field Aµ Aµ

|D5;J = M = 1
2〉 −1

2 Quarks Q, Q̃ No localized modes

|D5;J = M = 0〉 +1
2 Aµ, Quarks Q, Q̃ Aµ, Meson M , marg. massless

Table 1: Summary of mutually supersymmetric branes with unitary overlaps.

of the |D5;J = M = 0〉. One of them appears in the self-overlap of the extended brane

starting at J = 1
4 and remains in the spectrum when we decrease J → 0, the other appears

strictly at J = 0.

This phenomenon also happens in Liouville theory.14 In Liouville theory, the full

knowledge of the open string correlators showed us that this mode appearing at the edge of

the continuum is not a genuine localized mode. We can call it a marginally localized mode.

The other mode however is a genuine localized mode and its reflected non-normalizable

part actually vanishes [34] .

In our case as well, we should think of one of the scalar modes as a marginally massless

mode and the other as a genuine one. The latter mode M ij transforms in the adjoint of

the flavor group and is colorless, i.e. it has the quantum numbers of a meson. Recall

that the closed string theory and our branes conserve in perturbation theory the U(1)R
symmetry corresponding to the rotation of the cigar. The meson has charge Pθ = 1 under

this symmetry. This is twice the charge that the quarks carry.15 We shall understand this

better in geometric terms in section 8 .

We shall also see in section 8 that the backreaction onto the Ramond-Ramond axion

which effectively counts the objects charged under Pθ in the massless spectrum is consistent

with the existence of one massless scalar (not two) on the brane J = M = 0. This convinces

us that the other marginally massless mode does not affect the four dimensional physics.

To summarize, the |D5;J = 0+,M = 0〉 brane can be understood as being at the origin

of the Higgs branch of the gauge theory. Thought of as a sum of the |D5;J = M = 1
2 〉 and

|D0〉, there are massless quarks in the spectrum. There is a parameter on the |D5;J =

M = 1
2〉 which gives mass to the quarks. On the other hand, the above way of thinking of

this brane as a single object shows that on this branch, the axial combination of the two

U(1)’s rotating the two branes independently is broken, there is a corresponding massless

Nambu-Goldstone boson which can be given an expectation value. This meson has the

same quantum numbers as the operator QQ̃. There are other branes with unitary branes

with 0 < J < 1
2 whose details are in the above subsection. In the last two columns, we

show only the massless modes. The marginally massless modes are the ones which become

massive when the meson expectation value is non-zero.

14For the same technical reason of the logarithmic branch cut. As we stress later, it can be thought of as

capturing the topological part of the full theory we are interested in.
15Although the quarks and the mesons appear in the same open string character, the quarks have one of

their ends on the localized |D3〉 brane, while the mesons have both their ends on the extended brane. One

can think of the difference in charges as being absorbed by a open string vertex operator which implements

the change in boundary conditions.
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5. Relation to brane set-ups in ten dimensions

We can use our understanding of the closed string parameters to link the non-critical

superstring picture to the more familiar brane set-up in ten dimensions. A conventional

configuration of branes for the study of the physics of N = 1 gauge theories is the following

(see e.g. [39] for a review):

Spacetime : 0 1 2 3 4 5 6 7 8 9.

NS5 : 0 1 2 3 4 5 − − − −.

NS5′ : 0 1 2 3 − − − − 8 9.

D4 : 0 1 2 3 − − 6 − − −.

D6 : 0 1 2 3 − − − 7 8 9. (5.1)

Let us first consider a bulk theory without D-branes. The relative motion of the NS5-

branes is possible in the non-compact directions (x6, x7). The motion in these directions is

captured in the non-critical string theory in six dimensions by the parameters µ, µ of the

N = 2 Liouville theory. The string coupling is set by the absolute value of µ which measures

the distance between the NS5-branes, while the orientation of their relative position in the

(x6, x7) plane is set by the phase of µ. The exchange of the NS5-branes is implemented by

the map µ → −µ.

We can gather further evidence for this identification after introducing the D4-brane

into the set-up. There are three gauge theory parameters for pure Yang-Mills theory — the

gauge coupling and theta angle 1
g2
YM

+iθ, and the Fayet-Iliopoulos parameter r. These three

quantities can be thought of as the values that closed string fields take on the brane. In the

non-critical superstring theory, the relevant string modes are the complex tachyon T, T and

the RR axion χ. For µ = µ, the modes (T + T , ∂+χ + ∂−χ) fall into a N = 1 multiplet of

the preserved supersymmetries [38] . The conserved supersymmetries transform covariantly

under a rotation of the cigar, and so do the corresponding combinations of the fields.

The non-critical superstring theory is obtained from the ten-dimensional string in a

double scaling limit (after a T-duality), in which the mass of the D4-brane stretching

between the NS5-branes is kept fixed while scaling down the length of the D4-branes, and

the string coupling simultaneously [10] . The fixed mass of the D4-brane sets the parameter

µ, which also sets the gauge coupling. (The phase of µ does not enter the physics. Also, with

no flavours present, the FI parameter cannot be turned on while preserving supersymmetry.

We recall that we have seen in [7] that the θ angle is associated with the zero modes of the

RR axion field χ.

When we further introduce D6-branes, the relative orientation of the D6-branes and the

NS5 branes in the (6, 7) plane becomes important. Equivalently, the relative orientation

of the D6-branes and the D4-branes stretching between the NS5-branes is fixed by the

requirement of supersymmetry.

In the non-critical superstring set-up, we certainly have a supersymmetric configura-

tion when the phase of the D5 brane boundary state agrees with that of the D3 brane

boundary state (in the sense that the overlap is the supersymmetric one given in the previ-
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ous section). This corresponds to the D6-branes being orthogonal to the D4-branes in the

ten-dimensional picture. We can keep the D6-branes fixed while rotating the NS5-branes

(and the D4-brane in between), by changing the phase of µ and by shifting the angular

brane parameter M simultaneously, thus breaking supersymmetry.

We can thus identify (while keeping in mind that we agree to rotate the parameter M

of the D6-branes along with the phase of µ) that the parameter 1
2(µ+µ) can be associated

to the gauge coupling on the D4-brane, which is the motion in x6 (or rather, the length of

the localized D4 branes in the x6 direction), while the motion in x7 is the FI parameter

which we associate with 1
2i(µ − µ).

5.1 The branes in the non-critical string theory

Before re-interpreting our non-critical brane set-up in ten dimensions, let’s turn to the

brane addition relations in the six-dimensional non-critical superstring. We first remark

that on subtracting the equations (4.6) , (4.7) with J = M = 0 and J = M = 1
2 , we recover

the partition function of the D3-brane:

〈D3|e−THcl |D5;J = M = 0〉 − 〈D3|e−THcl |D5;J = M =
1

2
〉 = 〈D3|e−THcl |D3〉. (5.2)

We can also use the addition relation of our previous section tensored with the same space

filling brane in flat space to get the brane addition relation in the six-dimensional non-

critical superstring theory:

|D5;J = M = 0〉 = |D5;J = M =
1

2
〉 + |D3〉 (5.3)

We will comment later on the addition relation with the branes of opposite charges.

Moreover, we recall that the first order backreaction onto the cigar was calculated

in [7] , and it was found that the |D3〉 sources the RR axion. We will see later in section 8

that the |D5, J = M = 0〉 and |D5, J = M = 1
2〉 also source the RR axion with charges, in

units of the |D3〉 brane charge +1
2 for the first and −1

2 for the second brane.

5.2 The identification

We are ready to identify the branes in the non-critical superstring theory with the branes

in the original (not yet doubly scaled, and T-dual) ten-dimensional superstring set-up. For

definiteness, let’s say the NS5 is to the left of NS5′ in the x6 direction. Then we have the

following identifications:

1. The |D3〉 maps onto [6] a D4 brane starting on NS5 and ending on NS5′. We assign

to it a charge +1. (This fixes the orientation of the brane.)

2. The brane |D5, J = M = 1
2〉 maps to [6] a D6 brane to the left of the NS5 with a

D4 brane starting on it and ending on NS5. This has charge −1
2 .

3. |D5, J = M = 0〉 is a D6 brane to the left of the NS5 with a D4 brane starting on

it and ending on NS5′.
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The first identification is clear. The brane is the only localized D-brane consistent with

unitarity and supersymmetry which carries the right spectrum, namely a N = 1 vec-

tormultiplet. For the second and third identifications, the arguments are the following.

Firstly, these are extended branes, reaching asymptotic infinity. In the picture T-dual to

the cigar, they reach asymptotic infinity as a particular line in the (x6, x7) plane. This

agrees with the asymptotic form of the D6-branes in this plane. Secondly, we fixed the

charge of the D4-brane before, and the charges listed above are then found by simple com-

putation. These charges agree with those of the D6 branes. The third argument is that

the spectra on these branes agree precisely in the non-critical and in the ten-dimensional

picture. Moreover, a fourth argument is that indeed, these branes are consistent with the

first identification we made, in that these three classes of branes do satisfy the addition

relation |D5, J = M = 0〉 = |D5, J = M = 1
2〉 + |D3〉. The charges add appropriately

−1
2 + 1 = 1

2 .

Thus, we are now equipped to study the movements of the brane in the ten-dimensional

brane set-up, to translate these into the non-critical superstring theory, and to analyze the

effect on the gauge theories living on the branes in terms of their exact boundary state

description.

6. Electric-Magnetic duality in the gauge theory

In this section we discuss electric-magnetic duality in N = 1 supersymmetric quantum

chromodynamics, within the framework of non-critical superstring theory. We have seen

how the |D5;J = M = 1
2〉 brane introduces supersymmetric quarks to the gauge theory

on the |D3〉 brane. We assumed that µ is positive in our identification of these boundary

states as positive tension branes. We also saw that for µ > 0, the brane |D5;J = M = 0〉

introduces quarks as well as mesons to the gauge theory on the |D3〉 brane.

Although we will not further need the identification of these branes in ten-dimensions,

it may be useful for the reader to keep in mind that we identified these boundary states

in the ten-dimensional set-up, under the assumption that the NS5-brane is to the left of

the NS5’ brane. Namely, we identified these boundary states as corresponding to certain

branes in the electric picture. The fact that the NS5-brane is to the left of the NS5’ brane

is equivalent to restricting to positive values of µ. We want to study now what happens

to the configuration of branes as we go to negative values of µ (purely within the exact

description of the branes in the non-critical superstring theory).

We start with an electric configuration of Nf electric flavor branes and Nc < Nf color

branes, and perform the operation µ → −µ on the system. Using the mapping of boundary

states described in equation (3.3) , we obtain:

|D3;µ〉 → −|D3;−µ〉;

|D5;J = M =
1

2
;µ〉 → |D5;J = M =

1

2
;−µ〉

= |D5;J = M = 0;−µ〉 − |D3;−µ〉. (6.1)
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Now, for negative µ, which we associated to the NS5-branes being to the right of the NS5’

branes in the x6 direction, we will identify these boundary states differently with branes in

ten dimensions. In particular, we will know refer to these branes as being magnetic branes.

The final configuration is then Nf magnetic branes |D5;J = M = 0;−µ〉, Nf color

anti-branes (−|D3;−µ〉) and Nc color branes (−|D3;−µ〉) (Remember that both of these

localized branes are well-defined positive-tension objects). Considering that the branes and

anti-branes annihilate each other and that the left-over purely closed string configuration

decouples from the gauge theory physics, we find [40]:

|D3〉 + |D3〉 → closed string vacuum + closed string decay products, (6.2)

and we are left with a mutually supersymmetric system of Nf magnetic anti-branes

|D5;J = M = 0〉, and Nf − Nc color anti-branes −|D3〉. Thus, the gauge theory of the

dual configuration of branes at negative values of µ is the Seiberg dual. Note how the

various reversals of sign in (3.3) naturally lead to a reversal of the addition relation in the

dual configuration, and a set of final states consistent with charge conservation.

Note that for Nf < Nc, we cannot condense the open string tachyon fully by this

process. In this case, we break supersymmetry. In fact, we could describe the above

movement of branes as a function of µ in the complex plane. For Nf > Nc, the movement

can be performed while preserving supersymmetry along the whole path. While changing

the phase of µ, we would rotate the parameter M of the extended branes as well, keeping

the extended branes fixed at infinity. As we rotate, we need to recombine the extended

branes with the localized branes, turning on a vev for the strings stretching between Nc of

the localized and the extended branes. It should be possible to show in detail that these

vevs can be turned on consistent with supersymmetry only when Nf > Nc. This follows

from the effective action, but it is feasible as well to show this explictly using the full

boundary state. When Nc < Nf , we will not find a sufficient number of these open string

modes to preserve supersymmetry while rotating µ.

6.1 A note on the deformations of the theory

In the electric and magnetic versions of the gauge theory, it is well-known that the defor-

mations in one theory map to expectation values in the other. In the simplest case, the

mass parameter for the quarks in the electric theory has the same quantum numbers as

the expectation values of the meson in the magnetic dual. This relation is realized in the

open string theory on the branes in a rather interesting manner.

In the electric description of the theory, the parameter J controls the mass of the

quarks for M = 1
2 . When J → 1

2 , the quarks become massless and can condense. The mass

deformation is described by the zero mode of a field moving on the extended brane. The

vertex operator for this field is described by the non-normalizable mode corresponding to

h = Q = 0 tensored with an excitation in the cigar directions from the (j = m = 1
2) char-

acter. In the dual description, the vertex operator for the open string field corresponding

to the dual localized meson is almost the same as above with the only difference that the

h = Q = 0 mode on the cigar takes on the normalizable branch.
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7. Tachyon condensation and boundary RG flow

We have understood the brane addition relation for a closed string theory µ

|D5;J = M = 0;µ〉 = |D5;J = M =
1

2
;µ〉 + |D3;µ〉 , (7.1)

where all the objects in the above equations have positive tension. We would like to analyze

further the analogous relation for mutually non-supersymmetric branes in a given closed

string theory at a fixed value of the parameter µ. The first of the above equations (7.1)

implies

|D5;J = M = 0〉 + |D3〉 = |D5;J = M =
1

2
〉 + |D3〉 + |D3〉.

−→ |D5;J = M =
1

2
〉. (7.2)

where, in the first line, the right hand side manifestly does not preserve any supersymmetry

of the bulk theory. It contains a non-supersymmetric brane without RR charge (which can

decay to the closed string vacuum).

The general arguments of decay of a brane and its anti-brane to the closed string

vacuum are given in the context of open string field theory, and it is understood explicitly

as a time-dependent process [40]. We wish to argue now that we can actually understand

the above equation from the left hand side directly to the second line as a boundary

renormalization group flow on the J = M = 0 brane. We first argue this by relating

the set-up to a similar configuration in bosonic Liouville theory, where the worldsheet

boundary RG flow has been well-understood. Then, we discuss how this could be related

to a boundary RG flow within the cigar boundary conformal field theories.

Firstly, let’s discuss how to link up the relation between non-supersymmetric boundary

states with a boundary renormalization group flow in bosonic Liouville theory. By appro-

priately twisting the N = 2 Liouville worldsheet theory, we can focus on the topological

subsector of our closed string background which is described by a bosonic string theory

with a c = 1 boson at self dual radius coupled to Liouville theory [41, 42]. In [16] , it was

shown how to extend this map to the open string sector, mapping the boundary states and

the boundary two-point functions.

The topological subsector of the BPS branes we are studying is thus described by

the branes in Liouville theory. The |D3〉 branes map to the ZZ branes and the extended

branes |D5;J = M = 1
2〉 and |D5;J = M = 0〉 map to the FZZT branes labelled by σ = 1

and σ = 0 of [34] respectively. The addition relation we describe above, restricted to the

topological subsector simply maps to the addition relation of [22, 34] under the twist. The

spectrum on the σ = 0 brane contained in addition to the continuous modes, a localized

mode. In the physical non-critical superstring theory, this mode lifts to an infinite set of

open string modes summarized by the character Ch(J = M = 0) which gives rise to the

meson multiplet.

We can now try to understand the open string tachyon condensation describing the

process in (7.2) in this subsector. The paper [34] described how to understand the loss of
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the localized brane as a boundary RG flow. The RG flow is seeded by the highly relevant

(dimension zero) operator which was the new mode generated on the σ = 0 brane. In

our case, the operator to which this is lifted is not present in the spectrum of the BPS

branes, due to the GSO projection. However, the spectrum of open strings between the

non-mutually supersymmetric branes |D5;J = M = 0〉 and |D3〉, has the opposite GSO

projection and does contain the relevant boundary perturbation as its lowest mode, the

tachyonic dimension zero operator B0. In the topological subsector of the Yang-Mills theory

we therefore understand the non-supersymmetric brane addition relation (7.2) . In terms

of the pictures in the previous section, we now have the brane folding back on itself and

annihilating a little piece of itself.

To carry this over to the full theory, we would need to understand the structure of

the three point functions in the boundary N = 2 Liouville theory, and the renormaliza-

tion group flows between different boundary conformal field theories. However, we can

already abstract lessons from the bosonic Liouville theory example and list the properties

which will ensure that the RG flow seeded by the above tachyon proceeds according to our

expectations:

1. The bulk-boundary correlators for the extended branes are analytic in the boundary

parameters Ji.

2. The dimension zero boundary operator B0 which is localized on the J = 0 brane will

act as a projection operator in the boundary Hilbert space.

3. The boundary operator B0, when inserted in correlators involving the boundary state

J = 0 will act as a projector onto the localized brane.

4. There is an exact boundary renormalization group flow from the boundary state

J = 0 to the J = 1/2 brane, under perturbation by B0.

5. Thus, the boundary RG flow removes the part of the boundary state J = 0 that is

picked up under monodromy, under perturbation by the localized mode.

These properties form an important ingredient in a microscopic understanding of Seiberg

duality and it would be interesting to demonstrate them beyond our analysis in the topo-

logically twisted sector (using the results of [34] ).

8. What is the theory on the branes? — Global symmetries and RG flows

So far, we have argued that the gauge theories realized as low energy limits of the two brane

configurations belong to the same moduli space. To really argue for a full IR equivalence

as in [11] between the two descriptions, one must show that any open string process that

contributes in the extreme IR is independent of sign(µ).16

16This is certainly true for some simple open string processes like those involving only gauge fields and

its superpartners, and for the mass terms and the quartic coupling of the quarks.
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In this section, we try to understand more precisely the relation between the open

string theory living on the worldvolume of the D-branes and the electric/magnetic descrip-

tions of N = 1 SQCD. To this end, we first present a list of the global symmetries and

charge assignments of the various fields. We then compute the backreaction onto the closed

string background. We match the backreaction onto the RR axion with an anomaly coef-

ficient in the field theory which depends only on the massless spectrum. Then we use the

backreaction onto the NSNS background to teach us about the interactions in the theory.

From the analysis of the open string theories, we know that the two low energy theories

under consideration have the same field content as the electric and magnetic descriptions

of SQCD. However in our construction, we do not have another parameter to tune the

QCD scale relative to the string scale and it is determined dynamically. We can think of

the gauge theory on the branes as being completed by an open string field theory. More

practically, this theory can be defined with a string scale cutoff with natural values at that

scale for all allowed interactions.

Although there are only a few terms in the action (corresponding to the “pure” SQCD)

which are dimensionally relevant, the running to strong gauge coupling invalidates this

analysis based on perturbation theory. In fact we know [43] that the quartic operator

of quark superfields Wquart ∼ QQ̃QQ̃ although classically irrelevant actually could gain

a large anomalous dimension. Quantum mechanically, this operator depends crucially on

the parameters Nf and Nc. SQCD with this quartic coupling of the quarks flows to pure

electric SQCD if Nf − 2Nc > 0, but to pure magnetic SQCD if Nf − 2Nc < 0 [44] .

We would like to argue that the theory being described is indeed N = 1 SQCD with

a quartic coupling17 [43] , and that our analysis leads to an exact statement of duality

between two theories described by different values of the coupling.

It is difficult to check these statements directly in the full string theory, since at

present we have little knowledge of the three and four point functions of open strings in

these backgrounds. However, we can use the open-closed string duality to gain some insight

in how the different behaviours of the gauge theory depending on the sign of Nf − 2Nc are

coded in the closed string background. The first order backreaction on the cigar background

can be calculated as for the case of pure N = 1 super-Yang-Mills in [7] . We merely sketch

the calculation here, since it is very analogous to the detailed discussion in [7] .

8.1 Backreaction onto closed string background

To measure the backreaction, we use a similar contour prescription for the integral as in [7]

and one has to basically evaluate the one-point function multiplied by the profile of the

field at a specific value of the momentum p′ where the integrand has a pole. Since we have

measured already the backreaction of the localized brane in [7] , the relevant quantity is the

17In this context, see also [5] which describes a very closely related setup in supergravity. One would in

fact like to argue that our non-critical setup captures the near-singularity region of the setup of [5] . We

thank C. Nunez for a discussion on this issue.
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ratio of one-point functions18 for the extended |D5, p,Q〉 (2.4) and the localized |D3〉 (2.3):

ψp,Q(p′, Q′ = 0)

ψId(p′, Q′ = 0)
=

cos 4πpp′

sinh 2πp′ tanh πp′

ψp,Q(p′, Q′ = 1)

ψId(p′, Q′ = 1)
=

cos 4πpp′e−iπQQ′

sinh 2πp′ coth πp′
(8.1)

To measure the backreaction for the NSNS tachyon with winding number one, and the

constant mode of the RR field strength, we need to evaluate the above expressions at

(ip′ = 0, Q′ = 1), and to measure the backreaction onto the metric and dilaton, we need

to evaluate them at (ip′ = 1
2 , Q′ = 0). Plugging in these values, we find that all three of

the above measurements — the flux of the RR one-form field strength, the backreaction

onto the graviton-dilaton and the backreaction onto the winding tachyon have the following

measurements in the units of the D3 brane flux19:

|D3〉 : +1

|D5, J = M =
1

2
〉 : −

1

2

|D5, J = M = 0〉 : +
1

2
(8.2)

For Nc color branes and Nf flavor electric branes, we find that that the backreaction

onto the tachyon winding mode, the dilaton and the RR axion flux are all proportional

to (2Nc − Nf ). Note that the evaluation of the backreaction on the winding number one

tachyon and the RR scalar is not sensitive to the precise value of the brane parameter p

— it only depends on the quantized brane parameter Q (in constrast to the backreaction

on the metric and dilaton).

The backreaction onto the RR axion implies a non-zero theta angle for the gauge

theory20 θcig = 2θYM through the coupling of D-instantons [7] . One can also understand

in geometric terms how the rotation of the cigar affects the various open string modes.

Under such a rotation, the quark which lives on a single sheet of the D2-brane goes around

once on a rotation by 2π at infinity while the gluino and meson which live on a double

sheeted cover of the circle go around twice under the same rotation.

In the gauge theory, the anomaly in the conservation of the current which rotates the

gluini by one unit and the quarks and the anti-quarks in the same direction by half a unit is

proportional to (2Nc−Nf ) [see e.g. [45] ]. It is nice check therefore on the consistency of the

whole set-up, that the backreaction onto the zero mode of the RR axion χ = (2Nc −Nf )θ

18We write here the ratio of the NS-NS sector wavefunctions, there are related expressions for the RR

sector.
19Of course, finding the values for the first two branes is enough to find the third because of the addition

relation (2.7) .
20As a reminder, this factor of two arises because of the change of variables between the asymptotic

variables and the smooth tip. A rotation of 2π at infinity corresponds to a rotation by 4π near the tip,

and the two angles measured respectively phases in the closed string theory and open string theory on the

localized brane.
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indeed measures the anomaly in the conservation of the naive R current which rotates the

cigar direction θ [7] .

We can also check now that these charge assignments indeed generate anomaly co-

efficients for the rotation U(1)R consistent with (8.2) in the gauge theories on the corre-

sponding branes. In particular, for the |D5;J = M = 0〉, the potential presence of another

localized mode with non-zero charge under Pθ would be inconsistent with the above analy-

sis. This ties up the loose end of the argument in section 4 for the absence of the marginally

massless mode in the low energy physics.

Comments.

1. Measuring the backreaction onto the axion in the corresponding dual magnetic picture

(Ñc = Nf −Nc, Ñf = Nf ) gives the same answer (considering that the charges of all

the branes have changed sign).

2. The backreaction can really be trusted far from the tip of the cigar, which corresponds

to the UV of the open string theory. We might think of the backreaction of one of the

NSNS modes as measuring the running of the gauge coupling 1/g2
YM. In the region

where we can trust this computation, we deduce that the theory on the D-brane at

the corresponding energy scale is not pure electric SQCD (which has a first order

beta function proportional to 3Nc − Nf ).

3. For Nf = 2Nc, we have an extra conserved U(1).

8.2 Global Symmetries and charges

For Nf flavor branes there is a global symmetry SU(Nf ) rotating the brane basis. For

generic flavor branes at J = 1
2 + iP , it is clear from our semiclassical discussion (see

section 3 ) of the branes folding over and ending before the tip that one cannot rotate

the two sheets of the brane independently. This is consistent with the low-energy theory

having a mass term to the quarks. As P → 0, the self-overlap (4.5) changes smoothly and

there is no extra massless mode that appears at this point. As we move onto the branch

0 ≤ J ≤ 1
2 , there are extra modes appearing at J = 1

4 and J = 0, but these as we saw

are localized and have to do with effects in the four-dimensional theory, the bulk densities

ρi actually do not change at all. We view this as an indicator that there is no symmetry

enhancement happening in the six-dimensional theory.21

There are other U(1) global symmetries of SQCD which are usually written as U(1)B×

U(1)a×U(1)x [9] . The charges under (B, a, x) of the quarks, gluini and meson are (±1, 1, 0),

(0, 1, 1) and (0, 0, 2) respectively. The first one, baryon number is exactly conserved. The

latter two which are both R symmetries are not exact symmetries, only a linear combination

R = (1 − Nc

Nf
)a + ( Nc

Nf
)x is [11] . In the brane picture, this is understood as the fact that

although the rotation of the cigar is broken by the presence of the branes, there is a

conserved charge involving a rotation of the brane itself with respect to the background [6]

.

21In particular, we never see a SU(Nf ) × SU(Nf ) symmetry.
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The charges in the brane setup we consider are the geometric rotation Pθ, and the

rotation of the left and right part of the extended brane22 which we combine into their sum

and difference Q±. The charge Q+ which rotates the quarks in opposite ways is the baryon

number B. Based on our analysis of the theta angle above and the geometric argument,

we understand that the rotation of the cigar is generated by the charge Pθ = 1
2 (a + x). It

is also easy to deduce Q− = 1
2(x− a). The charges under (B,Pθ, Q

−) of the quarks, gluini

and meson are (±1, 1
2 ,−1

2), (0, 1, 0) and (0, 1, 1) which indeed lead to the usual (B, a, x)

assignment.

With these charge assignments, the superpotential of the type W ∼ MQQ̃ is allowed

(has charge two) in the magnetic theory, both by the classical R-charge Pθ of rotation of the

cigar, and by the exact R-charge of [11] . The rotation Pθ has a natural interpretation as an

R-symmetry in the closed string background, since the fermions are naturally anti-periodic

around the smooth cigar. The above coupling of quarks and mesons has total charge

Q− = 0, but unlike Pθ there is no natural reason to expect Q− to be an R-symmetry even

in the classical theory in our six-dimensional setup.

Our background which has a tachyon winding mode condensate has also a closed

string excitation X of the tachyon with Pθ = 1. This would have a mass of string scale and

naturally couple to the quarks as W ∼ X2 + Q̃XQ. This superpotential is not forbidden

by the classical R-symmetry Pθ, and is a further piece of evidence for the existence of the

quartic superpotential (at low energies, after integrating out the massive field).

8.3 Softly broken N = 2 theories?

The N = 1 SQCD with a quartic coupling can be thought of as arising from a low en-

ergy description of the softly broken N = 2 gauge theory with Nc colors and Nf matter

(hyper)multiplets after integrating out the massive adjoint field. This theory indeed has

a beta function proportional to the above coefficient 2Nc − Nf , and has a global flavor

symmetry SU(Nf ). This gains further support if one thinks of lifting our whole config-

uration to ten or eleven dimensions. The six dimensional background can be thought of

as arising from taking two parallel NS5-branes in ten dimensions (or M5-branes in eleven)

and rotating them in two of the dimensions till they are perpendicular [46] . A non-zero

angle of rotation corresponds to giving a mass to the matter in the vector multiplet (softly

breaking the theory) and rotation by π/2 implies the mass is of string scale.

9. Final remarks

In this paper, we analyzed in more detail the D-brane boundary states for theories in

four dimensions with N = 1 supersymmetry and Nc colors and Nf flavors, and their

behavior under bulk and boundary transformations. In particular, the transformation

exchanging NS5-branes in the bulk gave rise to a microscopic description of Seiberg-duality.

We discussed a brane addition relation, and also argued for the existence of a boundary

22Although there is no SU(Nf )2 symmetry on the branes, there is, in perturbation theory a U(1)2 as can

be seen from the fact that there are open strings carrying half-integer momentum in the partition function.

This is a phenomenon related to the double covering of the brane and exists even for the J = 1

2
+ iP branes.
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renormalization group flow of the cigar (or N = 2 Liouville) conformal field theory that

should encode the projection of a sum of branes onto one of its terms.

Furthermore, we showed that the closed string backreaction captures the qualitative

difference in the behavior of the gauge theory under RG flow, depending on the sign of the

quantity Nf − 2Nc as for theories with a superpotential quartic in the quark superfields.

We also presented other evidence for the presence of this operator — the (absence of)

chiral flavor symmetry, the absence of any classical U(1) symmetry forbidding such an

interaction, and the enhancement of symmetry at Nf = 2Nc.

We would like to make a remark about the “s-rule” in these systems. In the ten-

dimensional setup, this would say that there can be at most one supersymmetric D4 brane

connecting the D6 and the NS5 branes. In our configuration, we never see explicitly a

free localized |D3〉 brane on the corresponding extended brane |D5;J = M = 1
2 〉 (though

it carries the corresponding |D3〉 charge). The s-rule is in this sense trivially realized for

this object. What is interesting however is that the other extended brane |D5;J = M =

0〉 which already carries a localized |D3〉, does not admit23 any more. This suggests a

corresponding s-rule for the D6−NS5′ system. This is another pointer towards an allowed

quartic quark coupling. Indeed, there is such an s-rule for the D6 − NS5′ system with a

rotated NS5′ which realizes for a finite mass adjoint scale coupled to the quarks [47] .

Finally, some open problems include:

1. The full proof of the N = 2 Liouville boundary RG flow and the associated properties

of the boundary conformal field theory.

2. The extension of our analysis to include orientifold planes, and to realize Seiberg

duality in Sp and SO gauge theories microscopically.

3. The extension to gauge theories in other dimensions (e.g. three-dimensional gauge

theories on a D2 + D4-brane system in type IIA non-critical string theory).

4. The precise identification of the open string marginal operators involved in the rota-

tion of the parameter µ, consistently with supersymmetry.

5. Understanding the closed string background after the full backreaction of the color

branes, and the special nature of the theory at Nf = 2Nc.
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for discussions. S.M. would like to thank LPT-ENS for hospitality while part of this work

was being carried out. This work is partially supported by the RTN European program:

MRTN-CT2004-503369.

23Recall that the spectrum on the branes with M = 1

2
becomes non-unitary at J < 0.

– 27 –



J
H
E
P
1
0
(
2
0
0
6
)
0
1
9

A. Self-overlap of extended branes

We look for poles and the corresponding residues of the spectral density functions defined

by (4.5) in the region where we deform the contour. As explained in [15] , the contour has

to be shifted from max(p1, p2) on the imaginary axis to zero. We look for poles in that

range: 0 ≤ ip ≤ J where 0 ≤ J ≤ 1
2 . To count the number of such poles, the following

facts will be useful:

1. If a function behaves near x0 as f(x) ∼ (x − x0)
a, then ∂x log f(x) ∼ a

(x−x0)
near

x = x0. So, the net order of the zero of f(x) (zeros — poles) is the residue of the

function ∂x log f(x).

2. The function S1(x) has simple poles at x = 2+m+n and simple zeros at x = −m−n,

with m,n ∈ Z≥0.

Putting p1 = p2 in (4.5) , we get

ρ1 =
i

2π
∂p log

S1(
1
2 + ip)2S1(

1
2 + i2p1 + ip)S1(

1
2 − i2p1 + ip)

S1(
1
2 − ip)2S1(

1
2 + i2p1 − ip)S1(

1
2 − i2p1 − ip)

;

ρ2 =
i

2π
∂p logS1(1 + ip)2S1(1 + i2p1 + ip)S1(1 − i2p1 + ip). (A.1)

and we look for poles in these functions between p = p1 and p = 0, with 0 ≤ ip1 ≤ 1
2 . (See

the bulk of the paper.)

B. Expansion of some brane overlaps

We present here the low energy expansion of the overlaps between the branes |D5;J,M〉

with |D3〉. Let us write a generic partition sum as Z = ZNS + Z
gNS + ZR + Z

eR. The low

energy expansions of these functions are (with h = −J(J − 1) + M2):

M = 0

ZNS = qh− 1

2 + 4qhy + · · ·

Z
gNS = −qh− 1

2 + 4qhy + · · ·

ZR = −4qhy + · · ·

Z
eR = 0 (B.1)

M =
1

2

ZNS = 2qh− 1

2 y − 8qhy2 + 4qh+ 1

2 y3 + · · ·

Z
gNS = 2qh− 1

2 y + 8qhy2 + 4qh+ 1

2 y3 + · · ·

ZR = −2qh− 1

2 y + 0qhy2 − 4qh+ 1

2 y3 + · · ·

Z
eR = 0. (B.2)
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